
Dr Christopher Jones on behalf of CMS Offline and Computing
CHEP 2016
10 October 2016

CMS Event Processing Multi-core Efficiency Status

1

2016/10/10 C Jones | CMS Event Processing Multi−core Efficiency Status

Multi-threading Use In CMS

Multiple threads used for standard work
Have run reconstruction step with 4 threads
• prompt data usage for all LHC Run 2
• Monte Carlo production since Summer 2016

Running HLT 4 with threads since September of 2015
Simulation step with 4 threads will start Winter 2016
• Capability has been tested since Summer 2015

Only supported having one thread per concurrent event
Referred to in this talk as Original

Only using 4 threads per job since
Has good CPU efficiency
Sufficient to staying within memory limits of worker nodes
Keeps the number of simultaneous jobs controlled by workflow management to a workable limit

2

2016/10/10 C Jones | CMS Event Processing Multi−core Efficiency Status

Processing Stalls

Sharing resources across concurrently running events leads to thread stalls

Examples
All reads from ROOT input file must be serialized
Writing to a ROOT output file must be serialized
• Note: can write to different ROOT output files simultaneously

Legacy modules are not thread safe so the framework will only run one at a time

One thread per event implementation ran modules in fixed order
Could not schedule around algorithm waiting for a shared resource

3

2016/10/10 C Jones | CMS Event Processing Multi−core Efficiency Status

Stall Demonstration

Simple configuration to demonstrate stalls
Reads from input file
Two legacy modules which cannot run simultaneously
Five additional modules which are thread-safe
Data dependencies between modules constrain allowed concurrency
• Note: modules wait until all their data has been made available from other modules

4

StartInput

Thread-Safe

Thread-Unsafe Legacy

2016/10/10 C Jones | CMS Event Processing Multi−core Efficiency Status

Example Stall with Original Implementation

Four concurrent event loops
Each loop is referred to as a stream
Each loop can only use one thread

Green is when a module is running in stream

White is when no module running in stream

Red is when a stalled module is running
White precedes red when a stall happens
Module stalls because it can not run concurrently
and another stream is running the module

5

2016/10/10 C Jones | CMS Event Processing Multi−core Efficiency Status

Stall Mitigation using Multiple Threads per Concurrent Event (1)

All independent sequences of event filtering modules are started simultaneously
Within a sequence the modules must be run within the set order

6

A1 B1 C1 D1 E1

A2 B2 C2

A3 B3 C3 D3

2016/10/10 C Jones | CMS Event Processing Multi−core Efficiency Status

Stall Mitigation using Multiple Threads per Concurrent Event (2)

Data for modules are prefetched asynchronously
Provides a large number of tasks for TBB to schedule
Module starts after prefetches have finished

7

2016/10/10 C Jones | CMS Event Processing Multi−core Efficiency Status

Stall Mitigation using Multiple Threads per Concurrent Event (3)

A shared resource is guarded by a serial task queue
Modules needing the resource have their ‘to run’ task placed in the appropriate queue
When a task from a queue finishes, it automatically starts the next task in the queue

8

2016/10/10 C Jones | CMS Event Processing Multi−core Efficiency Status

Four threads with four streams

Blue when multiple modules running in a stream
Height of blue bar proportional to number of running
modules

Blue on one stream corresponds to white on
another

9

2016/10/10 C Jones | CMS Event Processing Multi−core Efficiency Status

Example Stall Mitigation with Multiple Threads

10

Five threads with four streams

Stalls greatly mitigated
Job finishes in less time

2016/10/10 C Jones | CMS Event Processing Multi−core Efficiency Status

Realistic Demonstration Measurements

Machine for testing
Westmere-EP L5640 CPU with 6 cores x 2 hyper-threads

Compared Reconstruction jobs
Original one-thread-per-event
Concurrent modules per event with number threads == number of streams
Concurrent modules per event with number threads == 12

Reconstruction configuration summary
3 output modules
1780 other modules
21 filter sequences

11

2016/10/10 C Jones | CMS Event Processing Multi-core Efficiency Status

Event Throughput Comparison
Ev

en
t T

hr
ou

gh
pu

t (
ev

/s
ec

)

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Streams
0 2 4 6 8 10 12

12 threads
#threads=#streams
Original

R
el

at
iv

e
Th

ro
ug

hp
ut

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Number of Streams
0 2 4 6 8 10 12

12 threads/Original
threads=streams/Original

12

2016/10/10 C Jones | CMS Event Processing Multi-core Efficiency Status

Reconstruction with 8 Threads and 6 Concurrent Events

13

Stalls are solely caused by one output module
The one which takes longest per event

Dynamic scheduling allows stall mitigation
Can reorder legacy modules and other output modules

Additional threads increase throughput

2016/10/10 C Jones | CMS Event Processing Multi-core Efficiency Status

Memory Utilization per Stream

14

R
SS

 M
em

or
y

(G
B)

0

1

2

3

4

Number of Streams
0 2 4 6 8 10 12

High initial memory
~ 2 GB

Memory grows slowly w.r.t number of streams
~150 MB/stream

Increasing number of threads does not noticeably
increase memory usage

2016/10/10 C Jones | CMS Event Processing Multi−core Efficiency Status

Total Throughput vs Memory for Fully Loaded Machine

Choose (number of processes) * (number of threads) to utilize all twelve cores
Included number of threads > number of streams

Can choose reasonable options between 2 ,1 and .5 GB/core options
15

To
ta

l T
hr

ou
gh

pu
t (

ev
en

ts
/s

ec
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Average Memory Used Per Core (GB)
0 0.5 1 1.5 2

12 processes
1 thread/process
1 streams

6 processes
2 thread/process
2 streams

3 processes
4 thread/process
4 streams

2 processes
6 thread/process
6 streams

1 process
12 thread/process
12 streams

2 processes
6 thread/process
5 streams

1 process
12 thread/process
10 streams

2016/10/10 C Jones | CMS Event Processing Multi−core Efficiency Status

Conclusion

CMS has successfully utilized multi-threaded processing jobs
All prompt reconstruction for Run 2 were multi-threaded jobs

Allowing multiple threads per event will allow
processing of more memory intensive jobs
utilization of machines with lower memory per core limits

Greater threading efficiency is important as CMS is
continually increases its utilization of multi-threading

16

